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Abstract: Artificially regulating gene expression is an important step in developing new
treatment for system-level disease such as cancer. In this paper, we propose a method to
regulate gene expression based on sampled-data measurements of gene products
concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with
stochastic nonlinear differential equation. To synthesize feedback controller, we formulate
sampling process as an impulsive system. By using a new Lyapunov function with
discontinuities at sampling times, state feedback gain that guarantees exponential mean-
square stability and H,, performance is derived from LMIs. These LMIs also determine the
maximum allowable time between sampling points. A numerical example and. a practical
application are presented to justify the applicability of the theoreticalfesultss
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1 Introduction

Gene Regulatory Networks (GRNs) are complex
networks of numerous genes and proteins with mutual
interactions. These networks control various cell
functions such as cell growth, differentiation,
proliferation and apoptosis by regulating ', gene
expression. Recent advances in cellular, scale
measurement techniques such as DNA\ microarray
technology provide an incentive to probe underlying
mechanisms of coherent behavior of living organisms.
Since cellular networks are dynamie, systems and full of
feedbacks, it seems that studying GRNs in the context
of systems theory will provide,valuable insight into the
functionality of these systems.

To analyze biochemical networks quantitatively,
various mathematical models have been used. In many
cases, differential equations are efficient tools for
investigating dynamical behavior of GRNs [1] and [2].
In [3], GRNs are modeled by nonlinear differential
equation in the form of Lur’e systems. Based on this
model, stability of GRNs in the presence of noise and
delay has been investigated [3-5]. In [6-10], Iess
conservative conditions have been obtained which are
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dependent on delay’s interval. In Refs. [11] and [12], by
considering random  delays, delay-probability-
distribution-dependent stability conditions have been
derived. Filter design for stochastic systems such as
gene regulatory networks have been studied in [13] and
[14].

Regulating gene products concentration in an
appropriate range is essential for cells to continue their
normal life so that dramatic changes in concentrations
may lead to life-threatening disease. For example, it is
believed that high level concentration of anti-apoptotic
proteins leads to cancer [15]. Recently, discovery of
RNAIi mechanism enables researchers to silence target
gene expression [16]. RNA interference is a post-
transcriptional mechanism in which small interfering
RNA (SiRNA) degrades encoded RNA and prevents
further protein translation. This ability motivates
scientists to synthesize new bio-drugs. Due to inherent
feedback mechanism in gene networks, simply
administration of SiRNA in order to change protein
concentration is not sufficient [17]. Therefore, to
reorganize abnormal gene expression level, we should
consider system level analysis in designing therapeutic
inputs.

Recently, artificial control of gene expression has
received considerable attention from various researchers
[18-20]. In [18] and [19], H,, state feedback controller
has been designed for stochastic GRNs with constant
delay. In [20], memory state feedback design for
stochastic GRNs with time varying delay has been
considered. In all of [18-20], however, the controller is
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designed in continuous time and it is assumed that
system states are always available. This assumption is
not possible in real world applications. Where control
inputs are only implementable as sampled signals. In
[21], finite time H, controller problem has been
investigated for discrete time GRNs. Discrete time
models are not equal to nonlinear continuous time
GRNs even at sampling points. In addition, this
approach ignores the phenomena within the sampling
intervals such as ripples. In [22], by using input delay
approach, sampled data controller has been designed for
gene regulatory networks. However, in [22] stochastic
noise and disturbance hasn’t been considered. Due to
small number of molecules in cellular environment,
stochastic noises and disturbances has a major role in
cellular behavior. To solve such problems, we employ
impulsive approach to design H, sampled-data
controller for stochastic GRNs.

Sampled-data systems have been investigated
thoroughly during past decades. In classic method, the
continuous time system is transformed into a discrete
time system. It should be noted that these two systems
are equivalent only at sampling times. Since GRNs are
nonlinear, the transformed system is not equivalent to
the initial continuous system even at sampling times.
Also, classic methods disregard inter-sample behavior
of the system. To deal with such an issue, lifting
technique has been presented in [23] and [24]. This
approach is although too conservative in dealing with
parametric uncertainty. In addition, this method cannot
be used in non-periodic sampling cases. Recently, input
delay approach has been proposed to deal with uncertain
sampling times [25] and [26]. In this approach,.sampled
input is modeled by continuous input with
corresponding delay. By wusing this approach,” H,
sampled data filter has been design for"Gene regulatory
networks [27]. In [28], by . introducing new
discontinuous Lyapunov _function for impulsive
systems, stability of uncertain sampled-data systems
with non-identical sampling intervals has been studied.

In this paper, we aim to design a state feedback
controller which guarantees H,, performance based on
sampled data measurements. It should be noted that due
to random nature of biochemical reactions in cellular
environment, gene expression is a noisy process leading
to considerable fluctuations in gene products level. So,
it is necessary to consider these fluctuations in
designing treatment protocols. To model these noisy
effects, multiplicative Gaussian noises are added to
translation and transcription dynamics. Sampling
process is modeled by defining new variables which
jump impulsively at sampling times. We propose new
Lyapunov function with jump at sampling times to take
into account the stochastic disturbances and sampling
process. Then, by using appropriate slack matrices,
applying congruence transformation and change of
variables, we derive sufficient conditions ensuring
mean-square exponential stability and H,, performance.

Since these conditions are presented in the form of
LMIs, the feedback gain can easily be obtained by using
numerical solvers.

In contrast to the methods in [18-20], the presented
method can be used when sampled data information are
available. By considering inter-sample behavior, this
method provide better disturbance attenuation than
discrete time approach presented in [21] Input delay
approach which is used in [22] leads to more
conservative results. In addition, presence of noise and
disturbance reduce controller performance seriously.
While MPC approach provided in [29] is fragile in the
presence of model’s uncertainties and disturbances, our
approach is robust against exogenous disturbances.

This paper is organized as follows: In section 2 we
present the model of stochastic Genetic regulatory
networks and give some definitions and preliminaries.
In section 3 we provide the main results on controller
design. Section 4 involves a simulation example to
verify the effectiveness,ofithe.results. In section 5, we
give the conclusionof the'paper.

2 System:Description and Preliminaries
In this” paper,” the following genetic regulatory
networks are considered [3]:

d
o= LA+ Ba(p(1) +1
(D
dper
— Cp(t)+ Dm(t)
in which
m(e) =[my(O),my (0),.om, (6) | o

P()=[ (0. p, (1), ()]

m, (¢),p;(¢) € R represent concentrations of mRNA
and protein of i’th gene. The parameters in Eq. (1) are
as folllows:

A=diag(a1,a2,...,an),

C=diag(cl,cz,...,cn),
D = diag(d,,d,.....d, ),
1=, L .. 1],
e =[g.@) 0.0 ... g0,0)].

These parameters contain information about
chemical reaction rates and interaction between nodes.
a; and c¢; determine the degradation rates of the
corresponding mRNA and protein and d; represents the
translation rate. BeRv» shows the structure of
feedback influences of proteins on mRNA production.
Nonlinear function Eq. (4) describe this influence
quantitatively, in which B, is positive constant and H; is

3)

Hill coefficient. |; is basal rates of mRNA production in
transcription process.

g (x)=(x/B;)" /(1+(x/[3i)H') o

Mohammadian et al: H,, Sampled-Data Controller Design for Stochastic ... 205



For convenience, we shift an equilibrium point
(m*,p*) to origin by letting ITl(t) = m(t)—m
p(t)=p(t)—p . Thus we have:

dm

E=_Am(t)+Bf(5(t))’ (5)
c:i_f = —Cp(t)+Dim(t),

where f(ﬁ(t)) = g(p(t)) - g(p*) . g is monotonically
increasing function with bounded derivative, therefore
foralla,be Rwith a#b

0<&(a)-g(b) k. (6)
a-b

Since f () is derived by subtracting a constant from

g(.), we conclude

£(p)(f(p)-K,p)<0 (7
where K, = diag(kl,kz,...,kn) .

Real biological networks are subjected to intrinsic
noises and external disturbances. Therefore, we consider
gene regulation network as follows:

(L—I?=I:—ArYl(t)+Bf(ﬁ(t))+EmV(t):|dt
+g, (M(t),p(t))do, (t).

& ®)
- =[-Cp(t)+Dm(t)+E,v(t)]dt
+g, (m(t).5(1))do, (1),
where
o, ()=[o, (1) o,(t) .. mn(t)] o

T
o, ()=[0,(1) o, (t) 0, (1))
are both n-dimensional independent Brownian motions
defined on the probability space (Q, F ,{}"t } , P). where

Q, F, {}:} ,and P are respectively sample space, o-
algebra, filter generated by Brownian motion and
probability measure. Functions gm(.,.), g, (,) satisfy

(21 (()-P())en (m()-P() <
m' (t )Gmle]m(t)+p (t)Gmz P

Tr( gy (m(1),5(1))g, t) p(1))) <

m' (1) GGyt )+P (1G;.G,.p(1)

and G ;20 and G20, (1=1,2). We assume that

) (10)

disturbance signal belongs to L, ([O,w],R) .

We assume that we can sample protein and mRNA
concentrations, and we are interested in designing

sampled-data controller. We define

x(t)=[m" (t)
dx (1) =[ Ax (1) +B,F(x(1))+ B,u(t) + Ev(t) ]t
+&(x(t))do(t) (11)
y= ix(t)

where:

- -A 0 B| - E,
i i)
o(t)= [Zm((tt))} L=[L, L
F(x(0)) = £(3()) &(x(1) -
diag(g,, (M(1).5(1)).¢,(m(1).5(1))).

y(t) is control output, and-u(t)=Kx(t), t, <t<t,,,

is sampled-data , [state feedback. t, represents the
sampling points, Welassume that there exist t,, >0 such

that t,,, =th< for all k>0. We define new
variable z(t)=x(t,), te[t,.t,,). Therefore, we
haye ‘u(t)=Kz(t), t, <t<t,,, . The derivative of this

variable is equal to zero between sampling times, but
experience jump at sampling points.
From Eq. (7) and Eq. (10), we conclude:

()R (D) 0.0 K]
Tr(2" (x(1)&(x (1)) < x" ()G Gx (1), (13)

G= dlag(Gm1 +G, .G, +G,, )

P’ (t)]T . Therefore, we have:

=]
—

(12)

Definition 1 [27]: The system in Eq. (11) with
v(t) =0 is said to be exponentially mean-square stable

if there exist two scalars v > 0 and 6 > 0 such that:
E{x(t)z}Sve"»E{x(O)z} (14)

Definition 2 [27]: The system in Eq. (11) is said to
be exponentially mean-square stable with the vy
disturbance attenuation if the dynamics are
exponentially mean-square stable with definition 1 and
under the =zero initial condition, the following
disturbance attenuation level is satisfied:

B{x(1)’} < ve " B{x(0)’} (15)

3 Main Results

In this section, we synthesize sampled-data state
feedback controller which provide exponential mean-
square stability of GRN. Then the sufficient conditions
that guarantee H, performance of the controller are
derived.
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Theorem 1: There exists a state feedback gain K
such that the GRN system in Eq. (11) with zero
disturbance is exponentially mean-square stable if there
exist symmetric and positive definite matrices Q,
I'=diag(y, Y2 e Vo) matrices Y,

T ..
= |:NlT N N3T:| and positive constants g;, €, &;

and c satisfying the following matrix inequalities:

Ql Yl
e —(1+‘CM€2+TM63)_IQ
L *
* *
N Y,
0 0
-6 (1-c1y)Q o |0
* ~Ty6 Q
_Q2 Yl
* —(1+’L’M€2+‘L’M63)_1Q (16)
\1»'2= * *
* *
* *
N Y, T N ]
0 0 0
-6 (1-c1,)Q 0 0 <0
* -146'Q 0
. * —a(1-cty)Q)
in which

T

oAl [QraT 1T [1
Q=[0||Y'B!| +|YBl||0| +[.0]cQ[L} 0 0]

0]| B} B! |0 A0
1T 1] 0 0 =QK" I
“N[=I| =|=I|IN"=|* 0 0 [+1,|-T|gx
0] (o] * x T 0
QAT 17 1T [QA 1T
Y'B] | —|-1|&(1-cty)Q| -1| +71y| Y'B! |&|-1
IB; | [0] 0 I'B; 0

oA [QAT 1T [1
Q,=|0(|Y'B] | +|Y'B] [|0| +|0|cQ[I 0 0]
0|l I'sf I'Bf ||0] |0

1T 1 I 1T [o 0 —QK"
=N[-I| =[-T|N"—=|-1|gQ|-I| =|* 0 0
0 0 0 0 * % OT

(17)

QGT QTAT
N =diag(Q.QI)NQ,Y,=| 0 |.Y,=|Y'B;
0 I'B]

and State feedback gain is derived as K=YQ™'.
Proof: Consider the following Lyapunov function:

V(x(t),z(t),r(t)) =x" (t)Px(t)+

t

I (ty —t+s)r (s)Rr, (s)ds+

=0 (18)
t'!t)(‘EM—t+S)TI'( ( (s))Sg(x(s)))ds

+(‘EM —r(t))(x(t)—z(t))T Xl(x(t)—z(t))

where

r, (t) = Ax(t)+B,f(x(t))+ B,Kz(t) (19)

Notice that if V(X(t),z(t),r(t)) =0 fort#s,,
we can_ contlude that® x'(t)Px(t)=0 and
(1 = (D)% 2(1)) X, (x(t)-2(t))=0. 1f P >
0 and.X; >0,we have x(t)=0 and z(t)=x(t)=0.
Therefore, if z(t)#0, x(t)#0, then V>0 for t#s, .

By using It6 formula, we have:
V(x(t),z(t),t(t))=£V(x(t),z(t),r(t))dt
+2x" () Pg(x(t))do(t) (20)
+2(x(1)-2(1)) X,&(x(t))do(1),

Since:

V(x(1).2(1), (t))<XT( )Px(t)+

J‘tMrOT s)ds+ J.‘tMTr( ( (s))Sg(x(s)))ds

() ()
e = (O)(x()-2()) X,(x()-2()) @D

In which £ is infinitesimal generator. We can
derive that:

EV(x(t),z(t),r(t))+cV(x(t),z(t),t(t))S

ZXT( )Pr (t)+ch( )Px(t) (22)
+Tr(2" (x (1)) PE(x(1)))+ 7t ()R, (1)

+J.t " r} (s)oRr, (s)ds+ rMTr( T (x(1))sa(x(t )))
+'[t_r(t)Tr(g (x(s))mSg(x(s)))ds

_(x(t)—z(t))T (1—C(TM—T(t)))Xl(X(t)—Z(t))
+2(1y = o(0))r ()X, (x(t) - 2(1))

+ (=) Tr(&" (x()X8(x(1)))
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in which @ =1-cr,,. On the other hand, for any matrix
N and an augmented vector
g (1) = [xT (1) 2" (1) ' (x(t)):| with  appropriate
dimension, the following inequality could be written for
any positive definite matrix @S and ®R :

28" () N(x(t)-z(t)) =2&" () Nx
[ j. r,(s)ds+ j g(x(s))dm(s)]g
=) ()

e (N((t) aR) Ne(1)+
{ j. ro(S)ds} (r(t)‘l mR)[ j ro(s)dsJ+
(1) 0

£ (Y)N(@S)™" NTg(t)+

[‘_!l.(‘)g(x(s))dm(s)] me[l_!L(l)g(x(s))dm(s)]

Based on Jenson inequality and It6 isometry we
have:

26T (ON(x(t) = 2(1)) <
t(1)&" ()N(=R)” N'g(t)

t
+ J. roT (s)mRr“(s)ds+
l—‘((l)

+ &7 ()N(wS) " NTg(t)+
+ I Tr{gT(x(s))mSg(x(s))}ds

()

Then from Eq. (24) and Eq. (13), we get
£V (x(t).z(t),1(t))+ev(x(t).z(t).7(t))<
2x" (t)Pr, (t)+cx" (t)Px(t)
+XT(t)GT(P+TMS+‘EMX])GX(t)
+1,1r (DR (1) +E" () N(@S)” NTg(¢) (25)
+e(0)&" (IN(oR)” N'g (1) =287 ()N (x(t) - 2(1))
—(x(t)—z(t))T (l—c(rM - 1:('[)))X1 (x(t)—z(t))
#2(z, - () (X, (x(1)-2(1))
=28 (x(9) A(F (x(1) - Rx (1))

Then, Eq. (25) can also be rewritten as follows:
LV(x(t),z(t),r(t))+cV(x(t),z(t),r(t))s

& (9 9(0)+ ()€ (ON(@R)” N'g()

1

—&T(t)|:—I](l—c(rM —(1))) X,[1 -1 0J&(1) (26)

0

(23)

24

I

+2(‘EM—‘c(t))E_,T(t)|:—I] x,[A BK B (1),

0

where
T

I
G=|o[p[A BK B J+[A BK B P[0
0 0

I AT I
+0]cP[1 0 0]+t,|K'B] [R[A BK B, ]+ 0|x

0 B/ 0
G"(P+1,S+1,X,)G[I 0 0] (27)
+N(wS)" N"=N[I -1 0]-[1 -1 0]'N"

0 0]
~lo|A[-k 0 1]-[-K o 1] Alo

I I

Necessary and sufficient conditions to derive
negative definiteness of the right hand side of Eq. (26)
are

I I
Q| -1 |(1%1, )X, [[ =10+, [ T |x
0 0
I T
X [ABK"B, ]+, [A BK B]X|-1| <o,
0
1
Q=|-1|X,[I -1 0]+t,N(oR)'N"<0  (28)
0

By using schur complement Eq. (28) can be written
as

Ql Yl
* —(P+1yS+1,X, )_1
% *
% *
N Y,
0 0
-@S 0 <0
-1
y TR (9)
Q, Y, N
* —(P+’CMS+‘CMX1) 0
* * _ms
% % *
% * k
t.Y, Ty N
0 0
0 0
-1,R™ 0
* -1y ®R
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where
I 17
&,=|op[A BK B ]+[A BK B] Plo
0
I

+O0|cP[1 0 0]-N[I -1 0]-[1 -1 0]'N"
0

1

—|-T|(1=cty )X, [T -1 0]

L0

[0] 0

~[o|a[-k o 1]-[-K 0 1] A0
I

T

I

’ (30)

I AT T AT I
+1,|-1|X |K'BT | +1,| K"B! |X,|-1
K B! B{ 0

T

I I
&, =|o|P[A BK B/]+[A BK B]Plo
0 0
-N[1 -1 0]-[1 -I 0]'N",
G AT
Y,=| 0 |,Y,=|K'B] |,
0 B/

Pre and post multiplying Eq. (29) by diag(®', P,
A, L P, 1) and diag(P", P, A", 1, P, L.P)nand
defining R=¢,P, S=¢,P, X, =¢,P and | Q=PB", we
have:

Q Y, N rMﬁ?z
-1
* —(1+’EM62+TM€3) Q 0 0 <0
* * —6mQ 0
L * * * _TMq_lQ
Q, Y, N
* (1+’CM62+TM€3) Q 0
* * —-6,®Q (31
* * *
* * %
o ¥, o N ]
0 0
0 0 |<0
1.6'Q 0
* —6wQ
where
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O, = [o][AQ B,KQ B,A ]
0

o] [o
—111[1 -1 0]-[1 -1 0]'N"

1T 1
+[AQ B,kQ BfAlT|:0] +|:0]cQ[I 0 0]

0 0 -QK'
- -1 el(l—ch)Q[I -1 0]-| o o 0
-KQ 0 2A™

QTAT T QTAT 1T
~1|e,| Q"K"B! | +1,,| Q"K"B! || -1| (32)
AT'B] A™'B} 0

I
Q, {0] AQ B,KQ BfA"l]
0

0 0

17 1
+[AQ BXKQ BfA1:|T|:0] +{O]cQ[I 0 0]

I

EN[L =T 0]-[1 -1 O]TﬁT—|:—I]e3Q[I -1 0]

0

0 0 -QK' QG” QAT

- 9 0 0 |[LY,=| 0 |,Y,=|QK'B]
-KQ 0 2A" 0 A™'B!

N = diag(Q.Q, A™)NQ

By defining Y=KQ, we reach LMIs in Eq. (16).
Therefore, from Eq. (16) we can conclude that

EV(x(t),z(t),t(t))
(33)
+cV(x(t),z(t),t(t))S0, fort#s,
Now, applying Ito inequality we have:

e“V(x(t),z(t),r(t)) = V(X(O),Z(O),‘E(O))

)
S)’T(S)z)} ds (34)
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From Eq. (33) and

V(x(t),z(t) ))

fort=s,1<i<k

(( ) (t"),r(t")) 35)

we can write,

e“E[V(x(t),z(t),t(t)):I < V(X(O),Z(O),‘C(O)) (36)

And finally, the following inequality is derived.
A (P)E[|x(t)|2] <e (P)EUX(O)H 37)

In the following theorem, controller gains which
guarantees H,, performance is synthesized.

Theorem 2: Consider the disturbance attenuation
levely is given. There exists a state feedback gain K

such that the GRN system in Eq. (11) with zero
disturbance is exponentially mean-square stable and
under zero initial condition provide guaranteed H.,
performance, if there exist symmetric and positive

definite matrices Q, F=diag(yl,y2,...,yn) , matrices

T T T T 7
Y, M=[M] M, M] M M]]
constants g, €, €; and c satisfying the following matrix
inequalities:

and positive

l_‘[1 A1
= (l+1ye, + rMs3)_l Q
El = * *
% %
% %
M WA, A
0 0 0
—&,(1-ct)Q 0 071%0,
* -146'Q 0
* * _I
B, =
I1, A, M
* (1+1:Ms2 +’L‘M83) Q 0
* * ) (1 CTM)Q
% k *
* * *
* k *
Ty A TMM A;
0 0 0
0 0 0
. <0,
—-Tu€ Q 0 0
* —TyE (l—ch)Q 0
; ; o (38)
where

I QTAT T QTAT I T I
0| Y'B! Y'B! || 0 0
I, = v+ v Q[T 0 0 0
"lo|l B! B || 0 "o Ql ]
0]| E E |lo] |o
I—T
.| -1
Ml w)Q[I -1 0 0]-
0] |0
0 0 —QK" 0]
%k
e [0 0 0 1]
* * o0 o
k% * 0_
17 [QrAtT] QA" [17
-I| |Y'B] Y'B! | |-
+T €. +T
M 0 3 l_,B-fr M FB-;- 3 O
0] b Ea| E 0
1TerA™] Forat][11" [1
0](Y"B} Y'B! || 0 0
I, = ) 1 000
>~ ol B rBT of ol ]
0fj E o] o
—1\"4 { &Q[l -1 0 0]-
0 0 —QKT 0
* 0
0 0 [0 0 0 1]
* % 20 0
£ * *
M = dlag(Q,Q,F,I)MQ
QG" QAT QL"
TRT (39)
A, = 0 A, = Y BTu A, = 0
0 I'B]
0 E" 0

controller gain is given by K=YQ™".

Proof: since Eq. (38) implies Eq. (16), based on the
theorem 1, exponential mean-square stability of
dynamics is guaranteed when V(t) =0. We consider

this new Lyapunov function,

V(x(t),z(t),1:(t))=xT (t)Px(t)
+ J. (ty —t+s)r'(s)Sr"(s)d

t=1(t) (40)

t

+ J. (rM—t+s)Tr( ( ())Sg( (t)))

=(1)
+(rM - 'c(t))(x(t)— Z(t))T X, (x(t)— Z(t))
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where

r(t)=Ax(t)+Bf(x(t))+B,Kz(t)+Ev(t) (@D
By defining £(t) = [&T (t) v* (t):|T , and using the

similar method in theorem 1, it is easy to show that,

E{EV(x(t),z(t),r(t)) }<
+cV(x(t),z(t),r(t))+ y(t)2 —yzv(t)2 -

g ()IE(Y)

+1(t) € ()M((1-cr, )R)" M" E(1)

2(r,—1(1)) E()[A BK B, E]x (42)

X[ -1 0 0]&(t)

I
-1

1o (1—c(rM—‘c(t)))Xl[I -1 0 0]

0
where
I T
ii|°p[A Bk B, El[A BK B, E]P°
0 0
0 0
1] I’
0 0 |-
H o[ePlt 0 0 0]+ [L 00 0]
0] 0
AT I
K'B! | =~ -+ |0
+1,, - R[A BK B, El+ 516"
| E 0
(P+7,8+7,X,)G[I 0 0 O}+M((1-ct,)S) M’

~M[I -1 0 0]-[I -1 0 0] M"-
o] o I

iy 0 0 -1
[—KOIO]AI =r |0 0 0 1| Cix

0 I 0
(1-c(ru—t(1))X,[1 -1 0 0]
0
_|° A[-R 0 1 0] (43)
I
0
If we have

M+c()M((1-cry)R) M
I
I

- (l—c(rM—r(t)))Xl[l -1 0 0] w
0

+2(IM—1:(‘[))><I:A B,K B, E]Tx

X, [I -1 0 0]<0

then

E{cv(x(o,z(t),r(t)) | 2}<0 s
+cV(x(t),z(t),r(t))+y(t) —yzv(t)

for all nonzero v(t). Since

(x(tk),e(tk),z(tk),O) < ltiTrtflV(x(t),e(t),z(t),r(t)) ,

we have,

E{Jz(y(s)z —y2v(s)2)ds} =
o y(8) =yv(s) (46)

E J;[+£V(X(S),Z(S),T(S))Jd
VIR0, 2(0) + Y (x(0),2(0) 1(0))
Under zero initial condition, we get

]E{':[(y(s)z—yzv(s)z)ds}s
o[ y(s) = () .

E{'([ +£V(x(s),z(s),t(s)) ‘ }_ @7

y(s) =v’v(s)
+£V(x(s),z(s),r(s)) dst<0
+cV(x(t),Z(t),r(t))

Therefore, the H, performance is satisfied.
Sufficient and necessary condition to satisfy Eq. (44) is

M+r,[I -1 0 0]'X,[A BK B, E]

&
© C—

+[A BK B, E]'X[1 -1 0 0]
I

1o (1—cty )X, [I -I 0 0] <0
0
fi+1,M((1-c, )R) " M" <0 (48)

By using schur complement Eq. (48) can be written
as,
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_ﬁl ll M M TmZZ 53_
* —(P+1,S+1,X, )_l 0 0 0 0
* * ~(1-ct,)s —(1-cty)S 0 0]<0
* * * * -t,R™" 0
* * * * * -1

_ﬁZ Z1 M TmzZ TMM Z3_ (49)
*  —(P+1,S+ ‘EMX1)_] 0 0 0 0
* * —(I—CTM)S 0 | 0 0 <0
* * * —-TuR™ 0 0
* * * * —Ty (I—CTM)R 0
* * * * * -1

I il
i, = g Pl4 BK B, E|+[4 BK B, E]Tpg ~M[I -1 0 0]-[£ =¥ 0 o] M"+
0 0

7

I 0 0 1
0 0 - - r |0 -1
olePl 00 0] A[-K 0 1 0]-[-K 0 I o] A A g |(men)xlr =10 0]-
0 0 0 0
0] 1 A A~ [ 1
0 K"B’ K"B" = g
2 u u
y O [O O 0 ]] +TM Xl B/T M B;‘ Xl O
1] 0 ET ET K
i [
I:I—OPZBKBE A( B K B ETP0 0P]OOO M|I -1 0 0
2= O I: u f :I +|: u f :I 0 + 0 C [ ]_ [ - ]_
K 0] 0
I 0 o
-1 0 - - r |0
T yrT
[1 -1 0 of M~ "|x[1 ~1 0 O]—[A[—K 0 1 0]-[-K o 1 o]AI -
0 0 0
0 G" A’ r
0 - 0] ¢ K'B'| < 0
2
y [0 00 1] Y= Y, = LA = (50)
0 0 {?f 0
1 0 E" 0
Pre and post multiplying Eq. (50) by 4 Simulations
diag(P'l,P", AL I,P'I,I), diag(P",P‘l, A_I,LLP_I,LP_I) In this section, we examine our results to show the
i r effectiveness of our method.
and defining R =¢P, S=¢,P, X, =¢,P, Q=P and Example 1: Consider a GRN system with the
Y=KQ LMIs in (38) are obtained. following parameters:
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04 0 0 0 0 -l
A=[ 0 02 0| B=25-1 0 0]
0 0 01 0 -1 0
100 100
D=08{0 1 0|, C=09/0 1 0], (1)
00 1 00 1
02 0.18 25
E,=|015|, E =|021|, I=|25|.
0.1 0.25 25

The regulation function is assumed to be
2

gi(Pi)= (lfip?) (i=1,2,3). It can be easily getting

that & = 3\/5 /8 . We consider the intensity functions of
intrinsic noises and the output matrices as follows:
G, =025LG,, =0.25],
G, =025LG,, =0.25], (52)
L, = 0.2[1 1 1], L, = 0.2[1 1 1]
To synthesize controller gain, we choose y = 0.5 and
v = 0.2. The controller gain is derived as follows
-2.4611 -0.1705 -0.1265
K=|-0.1151 -2.5384 -0.1686
-0.1606 —0.1155 -=2.5725
-0.8222 -0.1769 0.5920
0.6100 —-0.8094 -0.1717
—0.1610 0.6133 —0.7925

(33)

The simulation results are presented in! Figs, 17and
Fig. 2. Initial values are coincide with equilibrium point:

[m" p']=

(54)
[7.634 832 0.8982 6785 7.39430.7984]

The disturbance signal) is considered as
v(t) = Sexp(-0.1t). The disturbance attenuation level is
derived smaller than y = 0.5.

-
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fl/

o

t(sec)

Fig. 1 mRNAs concentration in the presence of control.

Then, we consider nonzero initial states and show
the results in Fig. 3. As can be seen, errors approach
zero exponentially.

Next, we compare our method with the one proposed
in [22] in presence of uncertainty and noise. We
consider similar system presented in (51), and for
Ty = 0.1 derive the feedback gain from LMIs presented

in [22]. We simulate both systems with the noise
intensity G, =0,G,, =0.5LG,, =0.5L,G,, =0 and
disturbance v(t)=5exp(-0.1t). As can be seen in

Figs. 4 and Fig. 5, our method show better results. It is
noticeable that considering exponential stability in our
method may lead to reduction in response speed.

o aft }Vk“ J
oI I e
': T) r{\‘ !

g Q 35 q
=I5
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=
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Fig. 2 proteins concentration in the presence of control.
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L
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I
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Fig. 3 exponential stability in the presence of initial state.
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Fig. 4 mRNA concentration comparison.
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) . i, — Our method
S el b [IN .
L = AN / . — Method presented in [22]]
g [ W \A\‘\ / Y,
S O '\‘ , \V'h 8 LY o
4 | Wy - iy
8 [T/ 'v‘.\ i mrrhl\ N ‘HK ’m\ /",’:My W ,J","‘ Wy, h
S wosih |y Sl W ey e, e v o]
5 9 'NW‘M‘ ‘ ¥ g : -
— -~ “uhs -~ -~
O = | e e ==y
Ml M a7 TSN ST T

ﬁ Q or ry\ m’f“"’ S |
'5 'q_') { ”\rn“.‘ \ / » /
- O B . {,A AT

05k N W i
e éusvwk“hwﬂ A R ‘
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Fig. 5 protein concentrations comparison.

100 —

protein abundance
(molecules per cell)

0 10 20 30 40 50 60 70 80

Fig. 6 protein concentrations of repressilator network without
control.

Example 2: The repressilator is a synthetic, genetic
circuit which is proposed by Elowitz and Leibler [30]. It
consists of three genes in a loop. Eachigene has an
inhibitory effect on the next gene production. Following
model has been suggested forthis/gene network [30]:

+m—ml(t)

d

ams(t) & +m—m3(t) (55)
()=, (1)-B, (1

o (6) =P, (). (1)

<pa(1)=Pm, (6)-Bp. (1)

In which ag= 0.03 molecule per cell.min”, p = 2
min” and n = 2. By considering o = 5, the equilibrium
point will be:

[m* p*:|= (56)
[61.25 6125 6125 6125 6125 61.25]

Fig. 6 shows the behavior of the network in presence
of noise with intensity G, ,=0,G,_,=0.25]

G,, =0.251,G , =0, disturbance v(t)=5exp(—0.1t).

Parameters of the system will be:

1 00 0 0 -1 1
A=|0 1 0|, B=5[-1 0 0], B;=|l
0 0 1 0 -1 0 1
(57)
1 00 1 00
D=02*0 1 0[,C=02*0 1 0
0 01 0 0 1
0.2 0.18
E,=|0.15|, E, =|0.2]
0.1 0.25

G, =0,G,9=025LG,, =025LG,, =0
L, =033%[1"1 1];’L, =033*[1 1 1]
For ty{= 1.1478 min, L, = 0.2[1 1 1], L, = 0.2[1 1 1]
and y~'l, feedback gain is derived as:
-+1.3207 -0.1564 -0.2366
K=1-0.2333 -1.3214 -0.1634
—0.1727 -0.2502 -1.3297
-4.9342 -0.4463 -1.3277
—-1.3282 —4.9817 -0.3437
03322 -1.4127 -4.9815

(58)

This controller can be implemented by using silico
feedback control for in vivo regulation as shown in [30].
Systems trajectories in presence of designed controller
are shown in Fig. 7.

120

100+

oo
S

protein abundance
(number per cell)

.
S

20

0

0 I‘U Z‘U 3‘0 4IU Sb GIU Y‘U 80
Time(min)

Fig. 7 protein concentrations of repressilator network with

control.
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10 Conclusion
In this paper, we have dealt with the problem of
Sampled-data H_ control design for gene regulatory

networks with stochastic perturbations.
impulsive

Based on
approach and exploiting discontinuous

Lyapunov functions, sampled data feedback control

with prescribed H

performance is designed for

stochastic GRNs. By using stochastic analysis methods

the existing results

for sampled-data control of

deterministic systems is developed for stochastic GRNs.
Finally, the effectiveness of the proposed method for
H_ control design has been shown by simulations.
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